在立体几何运算中,很多人都会觉得太过复杂,难以达到最简单的求解方法,最后总是出现错误,而且现在高考中几何立体运算也是必考的重点,尤其是二面角,那么求二面角的方法是什么呢?
1、垂面法——和棱垂直的平面,并且垂面和二面角相交的线所组成的角,也就是二面角和平面角。
2、定义法——在棱上任意取一点,并且在两个平面中都做出棱上A点的垂线,有的时候这条垂线可以在两个不同的平面内做垂线,再在其中一个垂足和垂线之间的平行线,也可以求出二面角。
3、向量法——把两个半平面的法向量求出,主要是通过夹角公式的方法求得。所求的二面角也就是这个夹角或者是补角。
4、异面直线距离法——将二面角假设为C-AB-D,那么其中的AC和BD就是异面之线AC⊥AB,而AB也就是异面直线中AC和BD的公垂线,根据AB,CD,AC,BD的值,就可以计算出二面角。
求二面角的方法有很多,比如异面之线距离法,向量法,定义法和垂面法都是非常好的求二面角的方法,要灵活的运用这些方法,简便的计算出最终的结果,才是最关键的。