等差数列求和公式推导 等差数列求和公式推导 有什么推论

编辑:
发布时间: 2021-01-25 22:54:15
分享:

1、等差数列是指从第二项开始,每一项与其前一项之差等于同一常数的一个数列,常用a、p表示。这个常数叫做等差数列的容差。前n项和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。

2.从通项公式可以看出,a(n)是N的线性函数(d≠0)或常数函数(d=0),且(N,an)排列在一条直线上。由前面的N项和公式可知,S(n)是二次函数(d≠0)或线性函数(d)

3.从等差数列的定义,通项公式,前N项和公式也可以推导出来:A(1)+A(N)= A(2)+A(N-1)= A(3)+A(N-2)=…= A(k)+A(N-k+1)。。=p(k)+p(n-k+1)),k∈{1,2,…,n} .

相关阅读
热门精选
孩子 皮肤